US009389679B2

a2 United States Patent 10) Patent No.: US 9,389,679 B2
Honji et al. (45) Date of Patent: Jul. 12, 2016
(54) APPLICATION PROGRAMMING INTERFACE 6,738,045 B2 5/2004 Hinckley et al.
FOR A MULTI-POINTER INDIRECT TOUCH gg?gzg Eﬁ 1%88? gOédon etal.
)) atton
INPUT DEVICE 7,629,961 B2 12/2009 Casebolt et al.
. 7,692,627 B2 4/2010 Wilson
(75) Inventors: Scott Honji, Sammamish, WA (US); 7,757,186 B2 7/2010 Fabrick, I
Paul Millsap, Issaquah, WA (US); 7,774,155 B2 8/2010 Sato et al.
Masahiko Kaneko, Fall City, WA (US); ; ;gé?gg Eﬁ ggg}g g:aﬁnk
. . . K ,796, ou
Eric Hebenstreit, Kirkland, WA (US); 7855718 B2 122010 Westerman
Marc Descamp, Seattle, WA (US) 8,537,115 B2 9/2013 Hotelling et al.
2002/0036622 Al 3/2002 Jaeger
(73) Assignee: Microsoft Technology Licensing, LL.C, 2003/0169277 Al 9/2003 Patton
Redmond, WA (US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 247 days. CA 2318815 Al 7/1999
CN 1661556 A 8/2005
(21) Appl. No.: 13/306,989 (Continued)
(22) Filed: Now. 30, 2011 OTHER PUBLICATIONS
(65) Prior Publication Data Geiger, Gunter, “Using the Touch Screen as a Controller for Portable
/ Computer Music Instruments”, Retrieved at <<http://citeseerx.ist.
US 2013/0135217 Al May 30, 2013 psu.edw/viewdoc/download?doi=10.1.1.96.9274&rep=repl
&type=pdf>>, Proceedings of International Conference on New
G Int. CI. Interfaces for Musical Expression, Jun. 4-8, 2006 61-64
GOGF 3/041 (2006.01) b b 279, SOV, P '
GOGF 3/01 (2006.01) (Continued)
GO6F 3/0488 (2013.01)
GO6F 3/038 (2013.01) Primary Examiner — Latanya Bibbins
(52) US.CL (74) Attorney, Agent, or Firm — Qudus Olaniran; Aaron
CPC GO6F 3/01 (2013.01); GO6F 3/038 (2013.01); Hoff; Micky Minhas
GOG6F 3/041 (2013.01); GO6F 3/0488 (2013.01)
(58) Field of Classification Search (57) ABSTRACT
CPC GOO6F 3/041; GOG6F 3/0488; GOGF 3/038;
GOG6F 3/01 To allow a computer platform to provide a consistent interface
See application file for complete search history. for applications to use information from multi-point indirect
touch input devices, an application programming interface is
(56) References Cited provided to a software interface layer that manages interac-

U.S. PATENT DOCUMENTS

5,616,078 A
6,029,214 A

4/1997 Oh
2/2000 Dorfman et al.

i

tion of the system with a variety of instantiations of multi-
pointer indirect touch input devices.

19 Claims, 8 Drawing Sheets

100
A

SETTINGS «
[130

COMPUTER|
PLATFORM

VIEWPORT
SELECTION —»/
MODULE

/ VIEWPORT
/" $1ZE AND
LOCATION

102

muLTE
POINTER
INDIRECT ——¢
INPUT !
DEVICE

/' MULTIPLE
POINTS

POINT MAPPING

AND BOUNDARY

CHECKING
MODULE

I

”
//
~110

r140

/
——»/ POINTS /’

SETTINGS A—-‘

142

120
f
~

DISPLAY

108
APPLICATIONS ™

US 9,389,679 B2

Page 2
(56) References Cited WO 99-38149 Al 7/1999
WO 2006-020305 A2 2/2006
U.S. PATENT DOCUMENTS WO 2011049513 Al 4/2011
WO 2011-082477 Al 7/2011
2003/0222856 Al 12/2003 Fedorak et al.
2005/0110769 Al 5/2005 DaCosta et al. OTHER PUBLICATIONS
2006/0033712 Al* 2/2006 Baudischetal. ... 345/157 . . .
2006/0244735 Al 11/2006 Wilson “YHTK—feature rich universal touchscreen controller”, Retrieved
2006/0267953 Al 11/2006 Peterson et al. at <<http://www.flightsim.com/vbfs/showthread.php?225255-
2006/0279548 Al 12/2006 Geaghan YHTK -feature-rich-universal-touchscreen-controller>>, Jan. 13,
2007/0109275 Al 5/2007 Chuang 2011 .2
2007/0126743 Al 6/2007 Park et al. P2 . .
2007/0229455 Al 10/2007 Martin et al. “International Search Report”, Mailed Date: Feb. 15, 2013, Applica-
2007/0257891 Al 11/2007 Esenther et al. tion No. PCT/US2012/066564, Filed Date: Nov. 27, 2012, p. 9.
2008/0001923 Al* 1/2008 Halletal.cccoo. 345/173 “International Search Report”, Mailed Date: Feb. 20, 2013, Applica-
2008/0001926 Al* 1/2008 XiaoPing etal. . 345/173 tion No. PCT/US2012/061742, Filed Date: Oct. 24, 2012, p. 9.
2008/0024459 Al 1/2008 Poupyrev et al. “International Search Report”, Mailed Date: Feb. 7, 2013, Applica-
20080024503 AL 112008 %’Vrgr‘l’;‘:tt al tion No. PCT/US2012/061225, Filed Date: Oct. 20, 2012, p. 16.
2008/0122798 Al 5/2008 Koshiyama et al. “Pointer Ballistics for Windows XP”, Published on: Oct. 31, 2002,
2008/0192004 Al* 82008 Lapstun GO6F 3/0317 Available at: http://web.archive.org/web/20110522061105/http://
345/156 msdn.microsoft.com/en-us/windows/hardware/gg463319.aspx.
2008/0259053 Al 10/2008 Newton “Visual Panel: From an Ordinary Paper to a Wireless and Mobile
2009/0046110 Al 2/2009 Sadler et al. Input Device”, Published on: Oct. 2000, Available at: http://research.
2009/0058829 Al 3/2009 Kim et al. microsoft.com/en-us/um/people/zhang/Papers/TR00-112.pdf.
2009/0085881 Al 4/2009 Keam cooxre o . .
5009/0122007 Al 52009 Tsuzaki et al. 'Windows Mouse Things”, Published on: Jun. 14,2009, Available at:
2009/0128516 A1l* 5/2009 Rimon et al.oooovion.. 345/174 http://donewmouseaccel.blogspot.in/2009/06/out-of-sync-and-up-
2009/0184939 Al 7/2009 Wohlstadter et al. side-down-windows.html.
2009/0213084 Al 8/2009 Kramer et al. “Supplementary Furopean Search Report Issued in Application No.
2009/0225049 Al 9/2009 Liu et al. 12853539.0”, Mailed Date: Mar. 27, 2015, 6 Pages.
2009/0232353 Al 9/2009 Sundaresan et al. “Supplementary Search Report Received for European Patent Appli-
%883;8%223?2 Al }8;3883 Esr‘llif:ln:g‘al cation No. 12840912.5”, Mailed Date: Jul. 14, 2015, 11 Pages.
2009/0262073 Al 10/2009 Rigazio et ;11. “Supplementary European Search Report Received for Application
2009/0284479 Al 11/2009 Dennis et al. No. 12860373.5”, Mailed Date: Jun. 18, 2015, 6 Pages.
2009/0284495 Al 11/2009 Geaghan et al. “Final Office Action Received for U.S. Appl. No. 13/277,222”,
2010/0020025 Al 1/2010 Lemort et al. Mailed Date: Dec. 29, 2014, 25 Pages.
2010/0079493 Al 4/2010 Tse et al. “Final Office Action Received for U.S. Appl. No. 13/277,222”,
2010/0088652 Al 4/2010 Ramsay, III et al. Mailed Date: Nov. 29, 2013, 17 Pages.
2010/0097342 Al 4/2010 Simmons et al. “Non Final Office Action Received for U.S. Appl. No. 13/277,222”,
2010/0103117 Al 4/2010 qunsend et al. Mailed Date: Aug. 5, 2014, 23 Pages.
2010/0110040 Al 5/2010 Kim et al. “Non Final Office Action Received for U.S. Appl. No. 13/277,222”,
2010/0139990 Al 6/2010 Westerman et al. Mailed Date: Jul. 23, 2013, 18 Pages.
2010/0275163 Al 10/2010 Gillespie et al. “Noti . " .
5010/0289754 Al 11/2010 Sleeman ot al. otice of Allowance Issued in U.S. Appl. No. 13/277,222”, Mailed
2010/0309139 Al 12/2010 Ng Date: Jun. 30, 2015, 7 Pages.
2010/0328227 Al* 12/2010 Matejka et al. 345/173 “N(_)n Final Office Action Received for U.S. Appl. No. 13/280,346”,
2011/0007021 Al 1/2011 Bernstein et al. Mailed Date: Feb. 19, 2014, 20 Pages.
2011/0012835 Al 1/2011 Hotelling et al. “Notice of Allowance Issued in U.S. Appl. No. 13/280,346”, Mailed
2011/0022990 A1* 1/2011 Wuetal. 715/856 Date: Jul. 7, 2014, 10 Pages.
2011/0025648 Al 2/2011 Laurent et al. “Notice of Allowance Issued in U.S. Appl. No. 13/280,346”, Mailed
2011/0032198 Al 2/2011 Miyazawa et al. Date: Nov. 13,2014, 7 Pages.
2011/0047504 Al* 2/2011 Wienandsetal. ... 715/786 “Final Office Action Received for U.S. Appl. No. 13/277,220”,
2011/0050394 Al 3/2011 Zhang et al. Mailed Date: Jun. 25, 2014, 24 Pages.
2011/0063248 Al 3/2011 Yoon “Non Final Office Action Received for U.S. Appl. No. 13/277,220”,
2011/0169748 Al 7/2011 Tse et al. Mailed Date: Feb. 9, 2015, 23 Pages.
2011/0193809 Al 8/2011 Walley et al. “Non Final Office Action Received for U.S. Appl. No. 13/277,220”,
2011/0205182 Al 8/2011 Miyazawa et al. Mailed Date: Feb. 5, 2014, 24 Pages.
2011/0230238 Al 9/2011 Aronsson et al. “First Office Action and Search Report Received for Chinese Patent
2011/0248948 Al 10/2011 Griffin et al. Application No. 201210399507 X”, Mailed Date: Jan. 5, 2015, 14
2012/0050180 Al 3/2012 Kingetal. Pages.
2012/0105357 Al 5/2012 Lietal “First Office Action and Search Report Received for Chinese Patent
2012/0242586 Al 9/2012 Krishnaswamy et al. Application No. 201210399628.4”, Mailed Date: Dec. 3, 2014, 12
Pages.
FOREIGN PATENT DOCUMENTS “First Office Action and Search Report Received for Chinese Patent
Application No. 201210411852.0”, Mailed Date: Dec. 3, 2014, 15
CN 101027679 A 8/2007 Pages.
CN 101118469 A 2/2008 “First Office Action and Search Report Received for Chinese Patent
CN 101430624 A~ 5/2009 Application No. 201210501550.2”, Mailed Date: Feb. 2, 2015, 14
CN 101526880 A 9/2009 Pages.
gg }8?2322%2 g }gg}g Fragiacomo, et al., “Novel Designs for Application Specific MEMS
CN 102197377 A 9/2011 Pressure Sensors”, In Sensors, vol. 10, Issue 11, Oct. 2010, pp.
EP 2284677 Al 2/2011 9541-9563. _ o L
P 3151652 U9 6/2009 Benko, et al., “Pointer Warping in Heterogeneous Multi-Monitor
KR 10-2010-0054275 A 5/2010 Environments”, In Proceedings of Graphics Interface, May 28, 2007,
KR 10-2011-0076292 A 7/2011 pp. 111-117.

US 9,389,679 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“International Preliminary Report on Patentability Received for PCT
Patent Application No. PCT/US2012/061225”, Mailed Date: Apr. 22,
2014, 4 Pages.
“International Preliminary Report on Patentability Received for PCT
Patent Application No. PCT/US2012/061742”, Mailed Date: Apr. 29,
2014, 4 Pages.
“International Preliminary Report on Patentability Received for PCT
Patent Application No. PCT/US2012/066564”, Mailed Date: Jun. 3,
2014, 4 Pages.

Hutterer, et al., “Windowing System Support for Single Display
Groupware”, In Computer Supported Cooperative Work, Nov. 4,
2006, 2 Pages.

McCallum, et al., “ARC-Pad: Absolute+Relative Cursor Positioning
for Large Displays with a Mobile Touchscreen”, In Proceedings of
the 22nd Annual ACM Symposium on User Interface Software and
Technology, Oct. 2009, pp. 153-156.

Moscovich, et al., “Multi-Finger Cursor Techniques”, In Proceedings
of Graphics Interface, Jun. 7, 2006, pp. 1-7.

* cited by examiner

U.S. Patent Jul. 12, 2016 Sheet 1 of 8 US 9,389,679 B2

~100
r104 i
-
; 7 134 COMPUTER
/ SETTINGS Vo PLATFORM
~130 ~108
 Jo ~
VIEWPORT / VIEWPORT /
SELECTION {we/ SIZEAND ~ /
MODULE / LOCATION /
&
~102 110
MULTI=) — y
POINTER /' MULTIPLE /
INDIRECT » POINTS /
INPUT / /
DEVICE
’] 142 120
40—
POINT MAPPING | / / /
AND BOUNDARY | / -
CHECKING mm-_-a/ POINTS / » DISPLAY
MODULE / /
T 144
i -
/ /
/ SETTINGS %
/ /
¥
~108
APPLICATIONS ™

FIG.1

U.S. Patent

Jul. 12, 2016 Sheet 2 of 8 US 9,389,679 B2

DETECT START OF INPUT SESSION

¥

GET INPUT LOCATOR

¥

DETERMINE SCALING FACTORS

¢

DETERMINE VIEWPORT EXTENT

k:d

DETERMINE SENSOR LOCATOR

214

o
{

RECEIVE
UPDATED =

¥
MAP SENSOR LOCATOR TO DISPLAY TO
PROVIDE NEW INPUT LOCATOR

¥

OBTAIN VIEWPORT LOCATOR

¥

MAP SENSOR INPUTS

206

p—

208

INPUTS

j,f~2 12

SAVE INFORMATION

FIG. 2

U.S. Patent Jul. 12, 2016 Sheet 3 of 8 US 9,389,679 B2

~300
RECEIVE INPUT POINTS FROM SENSOR ")

k4

¥

~302
MAP INPUT POINTS A
¥
~304
DEFINE BOUNDING BOX "
4

~306
COMPARE BOUNDING BOX TO DISPLAY A

COMPUTE REMEDIAL
OFFSET

¥
APPLY REMEDIAL
OFFSET

f A

RETAIN MAPPING

FIG. 3

U.S. Patent

Jul. 12, 2016

Sheet 4 of 8

US 9,389,679 B2

k4

RECEIVE INPUT POINTS FROM SENSOR

400

e

402
MAP INPUT POINTS S

k2

404

DEFINE BOUNDING BOX

¥

406

COMPARE BOUNDING BOX TO DISPLAY |/

2

410

412 ‘L
{n./'
COMPUTE REMEDIAL AN
OFFSET // ONE\Q
~414 /POINT IN N
¥ * DISPLAY /
MODIFY REMEDIAL “AREAY
OFFSET N4
+ 416
APPLY REMEDIAL |
OFFSET
i
RETAIN MAPPING

FIG. 4

U.S. Patent Jul. 12, 2016 Sheet 5 of 8 US 9,389,679 B2

~500
!
RECEIVE INPUT POINTS ~
w
502
DETERMINE DISPLACEMENT ~
v
~504
IDENTIFY INPUT WITH SMALLEST S
DISPLACEMENT FROM PREVIOUS FRAME
ki
506
CONVERT TO ACCELERATED DISPLACEMENT i~
%
~508
CONVERT ACCELERATED DISPLACEMENT TO |-/
DISPLAY COORDINATES

¥

~510
ADJUST EACH OUTPUT POINT AND OUTPUT |/
LOCATOR BY ACCELERATED DISPLACEMENT

FIG. 5

U.S. Patent Jul. 12, 2016 Sheet 6 of 8 US 9,389,679 B2

~600
DETERMINE DISPLACEMENT OF EACH INPUT -/
POINT FROM SENSOR LOCATOR
¥
lf602
SELECT MINIMUM DISPLACEMENT VALUE |~
¥
~604
CONVERT DISPLACEMENT TO PHYSICAL -
DIMENSIONS
¥
I,r--606
CONVERT TO SPAN ADJUSTMENT VALUE |
¥
~608
TRANSFORM SPAN ADJUSTMENT VALUE TO -/
SENSOR PIXEL VALUES
¥
~610
TRANSFORM SPAN ADJUSTMENT VALUE TO |-/
DISPLAY PIXEL VALUES
¥
612
ADJUST EACH POINT BY =t
SPAN ADJUSTMENT VALUE

FIG. 6

U.S. Patent Jul. 12, 2016 Sheet 7 of 8 US 9,389,679 B2

~700
. ~708
204 77 o REMOVABLE ./
/ [£
STORAGE
~ 710
SYSTEM PROCESSING NONREMOVABLE |+/
MEMORY UNIT STORAGE
714
VOLATILE 120 INPUT DEVICE(S) -
PROCESSING OUTPUT DEVICE(S) T
NONVOLATILE NI
MEMORY COMMUNICATION | /712
CONNECTION(S) |1

FIG. 7

U.S. Patent Jul. 12, 2016 Sheet 8 of 8 US 9,389,679 B2

820 ~814
{__,7.{, et
TOUCH CONTROLLER TOUCH
CONTROL PANEL APPLICATIONS
T ~812
~810 CORE INPUT
e STACK
TCS RUNTIME yy
Device /O ' | Injection
Thread VO Buffer | | Thread
A
~804 .
TCS CONTACT | /80 -
TOUCHCONTROLLER | N RECOGNITION | i
CLASS OBJECT i—
LIBRARY HID/USB
T (SOFTWARE) STACK
HID/I{SB hj,~802 R06a i
STACK A 800
* 800 TCS CONTACT o~
TOUCH “ .| RECOGNITION | TOUCH
CONTROLLER " LIBRARY h CONTROLLER
(FIRMWARE)

FIG. 8

US 9,389,679 B2

1
APPLICATION PROGRAMMING INTERFACE
FOR A MULTI-POINTER INDIRECT TOUCH
INPUT DEVICE

BACKGROUND

Manual input devices used for navigation and spatial con-
trol of a computing system have a significant impact on capa-
bilities of the computer system and a user’s overall experi-
ence. There are several kinds of manual input devices. The
most common of these for personal computers include single-
pointer, indirect interaction devices, such as a mouse or track-
pad, and direct interaction devices, such as touchscreens.

A single-pointer, indirect interaction device sensor detects
user interaction with the sensor and maps this interaction to a
position on a display. One method of mapping points of input
to the display involves one-to-one mapping of sensor extents
to the extents of the display, which is called absolute map-
ping. Examples of devices that employ absolute mapping are
pen and touch digitizers. Another method involves mapping
device sensor coordinates to a movable subportion of the
display, which is called relative mapping.

Examples of devices that employ relative mapping are the
mouse and devices that emulate the mouse, such as a track-
pad. A mouse senses movement, which displaces a presumed
starting position by a distance based on the sensed interaction
with the device. A trackpad is commonly used in a manner
similar to a mouse. The motion of a contact on the trackpad is
sensed, and the sensed motion is treated in a manner similar to
a mouse input.

A direct interaction device allows interaction with a device
that is visually aligned with a display. A direct interaction
device maps between positions on a touch sensitive surface
and positions on a display of the same size, using an absolute
mapping. For example, when a user touches a point on a
touchscreen, an input event may trigger an application
response, such as command actuation, in the user interface at
a position corresponding to the point on the display touched
by the user.

Absolute and relative mapping of spatial input from a
multi-pointer input device to a display have selective advan-
tages and disadvantages, depending on physical attributes of
the input and display devices, the capabilities of the system,
the nature and layout of the application user interface, the
type of the task the user is performing, and various ergonomic
factors.

Most input devices have buttons in addition to their posi-
tion information. For example, dual-state mechanical buttons
are common on mice. Pen digitizers also typically have some
pressure-responsive device in the tip. Most software drivers
for pen digitizers implement a form of mouse emulation in
process tip-related data. Also, buttons and other mechanisms
generally are processed as independent inputs of the input
device.

Input devices can be made in variety of shapes and sizes,
can have different resolutions from each other, and can pro-
vide a variety of data as input to the computer.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

20

30

40

45

55

60

2

To allow a computer platform to provide a consistent inter-
face for applications to use information from multi-point
indirect touch input devices, an application programming
interface is provided to a software interface layer that man-
ages interaction of the system with a variety of instantiations
of multi-pointer indirect touch input devices.

Such a host service can provide capabilities such as dis-
covery and binding of touch controller class devices upon
physical attachment to the host system; software driver and
hardware-only interfaces for communicating device capabili-
ties, touch data, and device mode changes between the con-
troller and the host system; transformation of stateless input
events emitted by touch controllers into one or more user or
application-selectable touch interaction models; global man-
agement of touch controller device, device connection, and
user interaction state; enforcement of base system require-
ments for touch device controllers; common interface for user
device configuration settings; support for device-specific,
value-add interaction models; management of host and
device security contexts; deployment and servicing model for
the touch controller host.

In the following description, reference is made to the
accompanying drawings which form a part hereof, and in
which are shown, by way of illustration, specific example
implementations of this technique. It is understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the disclosure.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system using an
multi-pointer indirect touch device.

FIG. 2 is a flow chart illustrating an example implementa-
tion of viewport placement.

FIG. 3 is a flow chart illustrating an example implementa-
tion of contact mapping.

FIG. 4 is a flow chart illustrating another example imple-
mentation of contact mapping.

FIG. 5 is a flow chart illustrating an example implementa-
tion of contact acceleration.

FIG. 6 is a flow chart illustrating an example implementa-
tion of span adjustment.

FIG. 7 is a block diagram of an example computing device
in which such a system can be implemented.

FIG. 8 is a block diagram of an example software architec-
ture for use on such a computing device for implementing
such a system.

DETAILED DESCRIPTION

The following section provides an example operating envi-
ronment in which an indirect touch input device can be used.
After describing an example implementation of the use of a
multi-pointer indirect touch device in connection with FIGS.
1-6, an example software architecture will then be described
in connection with FIGS. 7 and 8.

Referring to FIG. 1, a computer system 100 includes a
multi-pointer, indirect input device 102, having a sensor, con-
nected to a computer platform 104 (details of an example of
which are described below). Such a computer system may be
apersonal computer, home entertainment system, a projector,
akiosk application, compact personal electronics, or the like.
The computer platform has an operating system which man-
ages interaction between one or more applications 108 and
resources of the computer platform 104, such as its peripheral
devices including the multipointer indirect input device.

US 9,389,679 B2

3

Within the operating system, data describing multiple
sensed input points 110 is received from the sensor of the
multipointer indirect input device 102. These input points are
processed to map them to points on a display 120.

This mapping process involves determine an initial map-
ping of the device coordinate system to the display coordinate
system, which can be relative or absolute, and then a mapping
of'each point from the device coordinate system to the display
coordinate system. Such initial mapping occurs at the begin-
ning of each input session.

An input session is from a point in time a first input is
detected by the sensorto a point in time a last input is removed
from the sensor. During an input session, the input points are
likely to move. The input points are mapped to from their new
locations in the sensor coordinate system to corresponding
new locations in the display coordinate system. This move-
ment mapping can take into consideration issues such as
bounding and acceleration.

As shown in FIG. 1, the multiple points 110 are input to a
viewport selection module 130 at the beginning of an input
session. The viewport selection module provides, as its out-
put, aviewport size and location 132 in the display coordinate
system. The viewport defines a region in the display coordi-
nate space to which the sensor coordinate space is mapped. In
a configuration in which multiple device sensors are con-
nected to the system, each sensor has its own viewport. The
viewport may have a shape that corresponds to the shape of
the input device sensor. In some implementations however,
the viewport may have a different aspect ratio or orientation
from the sensor, or even a different shape. For example, an
ellipsoid sensor may be mapped to a rectangular viewport.
The viewport’s shape is typically defined by the host system,
but may also be defined by the device or the user. The view-
port’s size and position are computed when user inputs are
detected by the sensor. When no user inputs are detected by
the sensor, the size and position of the viewport are undefined.
The viewport is typically not displayed to the user. Together,
the viewport’s shape, size and position represent the mapping
of the sensor coordinate system to the display coordinate
system. Settings 134 determine how this mapping is done,
such as by relative or absolute mapping, examples of which
are described in more detail below.

The multiple points 110 also are input to an input mapping
module 140 throughout an input session. The input mapping
module provides, as its output, multiple points 142 in the
display coordinate system. Settings 134 determine how each
point is mapped, such as by determining device and display
reference locations for interpreting relative input positions,
applying input motion acceleration, span adjustments, and
bounding conditions, examples of which are described in
more detail below.

Given the multiple points mapped to a display coordinate
system, the multiple points 142 can be displayed on the dis-
play. Each point can be treated by the operating system 106
and/or applications 108 in a manner similar to any single
point, e.g., for selection of a displayed item, or in a manner
similar to multiple points from direct touch input sensors,
e.g., effecting zoom, rotation or movement of an element in
the host system user interface. The range of possible uses of
the multiple points, once mapped to the display, is not limiting
of this invention.

Given this context, an example implementation of the map-
ping of multiple points to a display will now be described in
more detail in connection with FIGS. 2-4.

10

20

25

40

45

4

In FIG. 2, a flowchart describes an example implementa-
tion of how the viewport size and location can be selected by
the viewport selection module, and how points can be subse-
quently mapped.

It should be noted that the following implementation is
based upon certain design decisions about a desirable user
experience. For example, it is assumed that the relative posi-
tion of each physical input with respect to other physical
inputs is retained upon projection to the display. It is also
assumed that distances between all inputs are scaled sym-
metrically.

Another aspect of the user experience is the kind of map-
ping between the input device and the display. The mapping
can be relative or absolute, and can be independent for each
axis. For example, a relative mapping can be applied to the y
axis, with an absolute mapping applied to the x axis, or vice
versa. Also, both axes can use different relative mappings.
The mapping also can be based on logical coordinates or
physical dimensions of the input device and the display. If the
mapping is based on the physical dimensions of the devices,
spatial accuracy is improved, providing a more intuitive and
cognitively efficient interface. These decisions about the kind
of mapping can be optional settings in the system.

Another aspect of the user experience is a bounding policy.
In particular, device inputs can be subject to a display bound-
ing policy for the system. For example, all device inputs can
be forced to remain within the display, or only one device
input from the set can be forced to remain within the display.
Another implementation does not use any bounding policy.
These decisions about bounding policy can be optional set-
tings in the system.

The viewport size and location is determined at the begin-
ning of each input session. The start of an input session is
detected 200, for example, when one or more input points are
detected by the sensor after a period of no user input. The
viewport dimensions in each axis may defined by the input
device, the host system, or the user. The dimensions can be
expressed as either a percentage of the target display device or
in physical units of distance. For physical units of distance to
be used, the physical and logical (coordinate) extents of both
the input sensor and display are provided, by, for example, the
device, user input or other means. A position of an output
locator, in the display coordinate space, is then retrieved 201.
In this implementation, the output locator position is global to
the user session (which begins when a user logs in and ends
when the user logs off). The output locator position is shared
among and updated by multiple single- and multi-pointer
input devices connected to the system. The output locator can
be aposition saved from a previous input session. If there was
no previous input session, then the center of the display
device, the last position of a mouse or other device, or an
alternative default display location can be used as the output
locator position.

Next, given known parameters, i.e., coordinates and
bounds, of the display device and input device, scaling factors
for each axis are determined 202. These parameters typically
are stored in memory. In the case of display device, param-
eters can be retrieved using system API’s. In the case of the
input device, parameters can be retrieved via device interro-
gation. Given the coordinates and bounds of the display and
input devices, the scaling factors are determined. If an abso-
Iute mapping is used, computations based on physical extents
are not necessary, and the x and y axis scale factors are based
on a one-to-one ratio of the device and display coordinate
extents. If a relative mapping is used, then the x and y axis
scale factors are determined by the ratios of the device dimen-

US 9,389,679 B2

5

sions to the viewport dimensions in display coordinates. The
scale factors can be computed once, stored in memory and
retrieved when needed.

The viewport extent, i.e., X and y coordinates of its vertices,
in the display coordinate space is determined 203 using the
determined scale factors. The viewport extent is initially
determined for an input session using the saved output loca-
tor, before a new output locator is computed as follows.

For a scaled viewport using the pixel density of the display,
the scale factors S,- are non-zero, positive values between 0
and 1, and the extent of the viewport

Lyoy = Syx [[2 » extent(Rpy)
Lyox +Syx /[2 xextent(Rp,)
Lyoy = Syy / [2 # extent(Rp,)

5

5

Rv =

5

Lyoy + Syy /[2 #extent(Rp,)

where L, is an initial viewport locator, typically the center of
the target display, S, are the scale factors and extent (R,) are
the x and y coordinate extents of the display, i.e., its pixel
width and height, and subscripts x and y indicate those values
on the x and y axes.

For a viewport using physical dimensions, where the
desired size S,-is a non-zero, positive value no greater than the
physical extent of the target display, and the pixel density D of
the display is known via hardware interrogation, the extent of
the viewport

[Lvox = Syx / [2 xextent(Rpx)]] * Dx + Rpx.tefi»

[Lyvox + [Syx /[2 * extent(Rpx)]] # Dx + Rpx et

[Lvoy = [Svy / [2 % extent(Rp))]] # Dy + Rpyaops ||
1

[Lyoy + Sy, / [2 = extent(Rp,)]] # Dy, + Rpy1op

Given an initial extent of the viewport, a sensor locator is
then determined 204, initially in the device coordinate sys-
tem. There are many ways to select the sensor locator, and the
particular way chosen is dependent on the desired user inter-
action. For example, if there is a single input detected by the
sensor, the sensor locator can be the coordinates of this single
input. If there are multiple inputs, then the sensor locator can
be the position of a single “primary” input, or a point having
a particular relationship with other inputs, such as the geo-
metric center of all inputs. The sensor locator is undefined
when no input points are detected and is not persisted between
input sessions.

When the position of a primary input is used as the sensor
locator, one of a variety of methods can be used to select and
assign primary status to the input. In general, the “primary”
input is an input point chosen from among the others by any
method. For example, the primary input can be the first input,
or the last input, detected in the session. This method carries
the drawback of forcing an arbitrary selection in the case of
multiple inputs arriving simultaneously. A solution is for the
primary input to selected by a form of geometric ordering,
such as the highest order input according to a geometric
sorting formula (which can be interaction dependent). For
example, a sorting formula can sort angles formed by each
input point with respect to an origin at the geometric center of
all inputs and a reference point. The reference point can be,
for example, a vertical line with angle measured based on left
or right handedness of a user.

15

20

25

30

45

50

6

Regardless of method, sensor locator determination may
be affected by the time of arrival and departure of inputs. To
protect against the condition in which the user intends to
arrive or depart multiple inputs simultaneously but instead
arrives or departs them at slightly different times, a small time
window (e.g., 10-60 ms) can be used to delay sensor locator
calculation.

Next, the sensor locator position is mapped 205 from
device coordinates to display coordinates. The result is a new
output locator position for the frame. This position can be
computed by [L/extent(R¢)*extent(R;)]+R,p, where Lg is
the x or y coordinate of the sensor locator, extent(R;) is the
width or height of the sensor coordinate space, and extent
(R;) is the width or height of the viewport, and R, is the
width or height of the initial viewport. This new output loca-
tor is constrained to be within the bounds of the display.

Given the new output locator, the viewport is then posi-
tioned in the display coordinate space by obtaining 206 the
viewport locator. For the first frame of the session, the view-
port position is determined; in subsequent frames it is
retrieved from memory. The position of the viewport is deter-
mined logically, meaning that it is optional whether to display
the viewport. In fact, in most implementations it is likely to be
preferable not to actually display the viewport.

As noted above, the viewport is a projection of the input
sensor coordinate space on the display, and the viewport
locator position is the geometric center of the viewport, in
display coordinates. As also noted above, unlike the output
locator, the viewport is undefined when no inputs are detected
by the sensor. It is associated with a particular device instance
(rather than global to the user session), and its position is
updated when the user initially places inputs on the sensor.
After an input session starts, and until the input session ends,
the viewport remains stationary between frames. If a frame
represents a continuance of an input session (lists of input
points from both previous and current frames are not empty),
then the viewport locator is retrieved from memory. If the
frame initiates a new input session, then the viewport locator
is obtained by determining an offset between a sensor locator
(determined in step 205) and the output locator position (de-
termined in step 201), as follows.

ALp=Lp-Lpo

Ly=[LJextent(Rg)*extent(R)]+L po+ALp

L, is then constrained to the bounds of the target display
and the extent of the viewport, determined above, is recalcu-
lated using the new viewport locator.

After computing the sensor locator, viewport locator, and
output locator for a frame, the sensor inputs for that frame are
then mapped 208 to display coordinates, in a manner
described in more detail below. If the input session ends, as
determined at 210, then some information about the input
session can be saved 212 (such as the last output locator). If
the input session has not ended, and if updated sensor input
positions are received (as determined at 214), then the process
repeats with determining the sensor locator 204 for the frame,
through mapping 208 these new sensor inputs to the display.
However, where the frame is part of a continuing session, the
viewport locator is not determined in step 206, but is retrieved
from memory.

FIG. 3 describes how, given the viewport size and location,
sensor inputs are mapped to points in the viewport, including
the enforcement of boundary conditions (if relative mapping
is done) on a single display. FIG. 3 describes a case in which
all inputs are constrained to being within the display.

US 9,389,679 B2

7

The system receives 300 a list of input points from the
device, each having coordinates in the device coordinate
space. Next, the input points are mapped 302 to their corre-
sponding points in display coordinate space. For example, the
coordinates Cj, in display coordinate space of a point Cg in
device coordinate space can be computed by [C/extent (R)*
extent (R;)]+R .

A bounding box containing the input points is defined 304.
The corners of the bounding box are mapped to and compared
306 to the visual extent of the display. If none of the corners
of'the bounding box is outside of the visual area of the display,
then the input mapping is retained 310. Otherwise, an offset to
move the bounding box to be within the visual extent of the
display is determined 312. In computing the minimal reme-
dial offset, a displacement vector between previous and cur-
rent frames of each non-conforming corner of the input
bounding box or the individual input define a path and its
point of intersection with the visible display boundary. The
remedial offset is the displacement between the path’s origin
and the point of intersection. This offset is applied 314 to the
points to re-map them to new positions within the visual area
of the display.

In another implementation, the points are constrained so
that at least one input point from the device remains dis-
played. InFIG. 4, the system receives 400 a list of input points
from the device, each having coordinates in the device coor-
dinate space. Next, the input points are mapped 402 to their
corresponding points in display coordinate space. A bound-
ing box containing the input points is defined 404. The cor-
ners of the bounding box are then compared 406 to the visual
extent of the display. If at least one of the corners of the
bounding box remains in the visual area of the display, then
the input mapping is retained 410. Otherwise, a remedial
offset to move at least one point of the bounding box to be
within the visual extent of the display is determined 412.
Next, an offset of the input nearest the contained corner is
determined and applied 414 to remedial offset. This updated
remedial offset is applied 416 to the points to re-map them to
new positions within the visual area of the display.

For multiple monitor displays, the process is similar. There
are regular display topologies, where the union of visible
areas of the display is a single, rectangular, “virtual” display
with no internal voids. For regular display topologies, bound-
ing of multiple inputs to the boundaries of the virtual display
surface is identical to that for a single display. There also can
be irregular display topologies, where the union of visible
areas of the display is a rectilinear virtual display with convex
or concave internal voids. For these display topologies, the
foregoing methods can be used to compute and apply reme-
dial offsets.

However, an additional failure case is where a point lies in
one of the convex or concave internal voids, a bounding box
containing only those points outside of the visual area of the
display can be computed, and used to compute a remedial
offset. In this case, a bounding box is computed to contain
input points that do not map to visible areas of the display,
herein called a non-conforming bounding box. A minimal
remedial offset is computed by which to ensure at least one
corner of a non-conforming bounding box is contained within
the visible portion of the display. This remedial offset is
applied to the device-to-display transform for all inputs.

A more specific example implementation of boundary con-
ditions for multiple monitors will now be described.

In this example, for each input, a target bounding display
(Rp, rarger) 18 determined in the following way. First, it is
determined if the input position C, is not contained within a
visible region of the virtual display surface. If it is not, then

10

15

20

25

30

35

40

45

50

55

60

65

8

the coordinates of display R, of the input for the previous
frame are retrieved. For a frame representing a new session,
these coordinates are substituted with those of the display
containing the output locator position L,,. Next, it is deter-
mined whether the input C,, remains bounded by R, in either
the x ory axis. If a positive test is observed in either axis, then
the target bounding display is the display R . Otherwise, the
input is out of the bounds of display R,,,. A displacement
vector ASg in sensor coordinates is then determined for this
input: AS ~C—Cg,. The extent of the sensor, extent(Ry), is
retrieved. The dominant axis of displacement is determined.
The X axis dominates if |ASg /extent(R,)>=IASg /extent
(Rg,)I. Otherwise the Y axis dominates.

The dominant axis of input displacement is then used to
determine a target bounding display. If the X axis is dominant,
then the target bounding display Ry, .., is the display that
satisfies the following conditions: 1. the input falls in the
horizontal range of the display; 2. the target display is in the
primary moving direction of the input and shares that bound-
ary with the last display; and 3. the last input position falls into
the vertical range of the display. If the Y axis is dominant, then
the target bounding display Ry, ., satisfies the following
conditions: 1. the input falls in the vertical range of the dis-
play; 2. the target display is in the primary moving direction
of'the input and shares that boundary with the last display; and
3. the last input position falls into the horizontal range of the
display.

If the target bounding display cannot be determined using
the dominant direction, then a search is performed in the
non-dominant direction. If the target bounding display is still
not found, the target display is the input’s previous display.

Given the target bounding display for an input, the input is
clamped to that display, and the clamping offset is calculated
and stored. This clamping offset is applied to all inputs so that
the relative distance among them is maintained. After adjust-
ing the inputs in this manner, they are all tested again to ensure
they are on the visible part of the display.

In some interaction modes, a small amount of time is
allowed to realize the user’s intention to make multiple inputs
with the sensor simultaneously. When the first input of a
session is observed, atimer is activated and arriving inputs are
marked inactive, and sensor locator determination is deferred
until timer expiration, or terminated if arriving inputs are
removed. Likewise, the user may intend to depart inputs
simultaneously. To realize this intention without affecting
sensor locator position, a timer can be used. The timer is
activated, and departing inputs continue to be included in
sensor locator computations until the timer expires.

In the foregoing description, in both relative and absolute
mapping modes, the input points are mapped directly to dis-
play coordinates. In a relative mapping mode, however, the
input device can span only a subset of the target display
coordinate space. Therefore, navigation from one display
location to another location can involve multiple strokes,
unless some form of acceleration of the points is applied as
movement of the input points is detected. Conversely, in order
to achieve pixel-level, point-to-point targeting precision, a
form of deceleration of the points can be applied. Such accel-
eration and deceleration, sometimes referred to as “pointer
ballistics,” can be applied to a multiple input, indirect input
device in the following manner. The displacement of input
points on the input device is taken into consideration in the
mapping of the input points from the device coordinate space
to the display coordinate space, to accelerate or decelerate, as
the case may be, movement of the points on the display. In
general, a measure of displacement for the input points is
determined. This displacement is the input to a function that

US 9,389,679 B2

9

determines, based on the displacement, how to alter the map-
ping of the input device points to their corresponding display
coordinates.

In one implementation, the displacement of each input
point is determined. The physical displacement in sensor
pixels of the input with the lowest magnitude displacement
vector is passed through an acceleration curve transform to
produce a single accelerated display displacement, and this is
applied to the display displacements of the output locator and
all points. The inputs to the acceleration function can be either
the vector magnitude or a value for each axis can be input to
two different acceleration functions. This implementation
will now be described in connection with FIG. 5.

First, input points on an input sensor, from first and second
points in time, are received 500. Note that how to uniquely
identify and track moving or stationary inputs, known in the
art as “input recognition and tracking,” is device and sensor
specific. The invention is not limited to any specific input
recognition and tracking technique. Any technique for such
recognition and tracking that has been found to be suitable in
the art can be used.

The displacement in device coordinates (i.e., pixels) in
each dimension of each input within a time interval is then
determined 502. If the time intervals are known to be con-
stant, then the displacement alone can be used. Otherwise the
time interval can be used to compute velocity.

For each time interval, or “frame,” of inputs, the input with
the smallest magnitude displacement, or velocity, is identified
504. The input with the lowest magnitude is chosen (rather
than the average or maximum, for example) so that inputs
held stationary on the input sensor remain stationary when
mapped to the display.

The displacement of the identified input can be converted
from a displacement in pixels to a physical displacement,
using the pixel density of the sensor. The displacement value
is used as an input to an acceleration function to transform
506 the value to an accelerated displacement. The invention is
not limited by the specific acceleration formula used. Any
reasonable technique currently used in the art, such as used
for mouse pointer acceleration, can be used. The invention
generally can be applied to any acceleration formula that
permits independent acceleration of each coordinate axis (x,
y or 7). A suitable transform can be implemented using a
piece-wise linear function that maps a displacement value to
an accelerated displacement value. The accelerated displace-
ment value, if based on physical dimensions can be converted
back to pixel coordinates.

The accelerated displacement is then converted 508 to an
accelerated displacement in display coordinate space. For
example, the conversion can be expressed by the following:
AC,=AC/extent(Rg)*extent(R;)]+R ;. Each input position
mapped to display coordinates is then adjusted 510 by the
accelerated displacement.

For absolutely mapped dimensions, a similar process
called span adjustment can be used, as described in connec-
tion with FIG. 6. In FIG. 6, the displacement of each input
from the sensor locator is determined 600, in pixels in the
device coordinate space. The minimum displacement is
selected 602. This minimum displacement value is converted
604 to physical dimensions using the pixel density of the
device. The minimum displacement value in physical dimen-
sions is transformed 606 to a span adjustment value, using any
appropriate transform. A suitable transform may be similar to
the acceleration transform, such as a piece-wise linear func-
tion that maps a displacement value to a span adjustment
value. This span adjustment value is converted 608 back to
pixel values. Similar to acceleration, the span adjustment

10

15

20

25

30

35

40

45

50

55

60

65

10

value is then transformed 610 to display pixel values, and
each input point is adjusted 612 using that value.

It should be noted that the acceleration and span adjust-
ment modification to input points is done prior to applying the
boundary conditions that ensure that points remain in the
visible display area.

Having now described an example implementation, a com-
puting environment in which such a system is designed to
operate will now be described. The following description is
intended to provide a brief, general description of a suitable
computing environment in which this system can be imple-
mented. The system can be implemented with numerous gen-
eral purpose or special purpose computing hardware configu-
rations. Examples of well known computing devices that may
be suitable include, but are not limited to, personal comput-
ers, server computers, hand-held or laptop devices (for
example, media players, notebook computers, cellular
phones, personal data assistants, voice recorders), multipro-
cessor systems, microprocessor-based systems, set top boxes,
game consoles, programmable consumer electronics, net-
work PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above sys-
tems or devices, and the like.

FIG. 7 illustrates an example of a suitable computing sys-
tem environment. The computing system environment is only
one example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality of such a computing environment. Neither
should the computing environment be interpreted as having
any dependency or requirement relating to any one or com-
bination of components illustrated in the example operating
environment.

With reference to FIG. 7, an example computing environ-
ment includes a computing machine, such as computing
machine 700. In its most basic configuration, computing
machine 700 typically includes at least one processing unit
702 and memory 704. The computing device may include
multiple processing units and/or additional co-processing
units such as graphics processing unit 720. Depending on the
exact configuration and type of computing device, memory
704 may be volatile (such as RAM), non-volatile (such as
ROM, flash memory, etc.) or some combination of the two.
This most basic configuration is illustrated in FIG. 7 by
dashed line 706. Additionally, computing machine 700 may
also have additional features/functionality. For example,
computing machine 700 may also include additional storage
(removable and/or non-removable) including, but not limited
to, magnetic or optical disks or tape. Such additional storage
is illustrated in FIG. 7 by removable storage 708 and non-
removable storage 710. Computer storage media includes
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer program instructions, data
structures, program modules or other data. Memory 704,
removable storage 708 and non-removable storage 710 are all
examples of computer storage media. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
computing machine 700. Any such computer storage media
may be part of computing machine 700.

Computing machine 700 may also contain communica-
tions connection(s) 712 that allow the device to communicate
with other devices. Communications connection(s) 712 is an

US 9,389,679 B2

11

example of communication media. Communication media
typically carries computer program instructions, data struc-
tures, program modules or other data in a modulated data
signal such as a carrier wave or other transport mechanism
and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal, thereby changing the con-
figuration or state of the receiving device of the signal. By
way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared
and other wireless media.

Computing machine 700 may have various input device(s)
714 such as a keyboard, mouse, pen, camera, touch input
device, and so on. Output device(s) 716 such as a display,
speakers, a printer, and so on may also be included. All of
these devices are well known in the art and need not be
discussed at length here.

The system can be implemented in the general context of
software, including computer-executable instructions and/or
computer-interpreted instructions, such as program modules,
being processed by a computing machine. Generally, pro-
gram modules include routines, programs, objects, compo-
nents, data structures, and so on, that, when processed by a
processing unit, instruct the processing unit to perform par-
ticular tasks or implement particular abstract data types. This
system may be practiced in distributed computing environ-
ments where tasks are performed by remote processing
devices that are linked through a communications network. In
a distributed computing environment, program modules may
be located in both local and remote computer storage media
including memory storage devices.

A particular example software architecture will now be
described in connection with FIG. 8. One or more indirect
touch devices 800 can be connected to the computer platform
through a USB/HID interface 802. Each of them has touch
controller interface object 804 associated with it, which can
be implemented as a dynamically linked library installed as a
user-level service by the operating system. A contact recog-
nition module 806 can be provided to provide for low level
processing of sensor data from the input device to provide, for
each frame, a list of contact and attributes of those contacts.
This module could be a software library 806 or a firmware
implemented library 806a.

The touch controller interface object 804 has the following
methods. An open method allows the caller to open and ini-
tialize the device for data transfer following device attach-
ment. A close method allows the caller to close the device,
which involves clean up following physical removal. A query
method retrieves device data. The device data is stored one or
more data structures by the touch controller interface object.
The device data can include information such as supported
device modes, sensor dimensions and resolution, a maximum
number of contacts, pressure entry/exit thresholds. A get
method causes the object to transfer an array of stateless
contact descriptors, state information (such as locked state
status), and frame time information. A set method causes the
object to enter into one of a set of modes. For example, this
method can enable or disable hardware event reporting modes
(e.g. HID mouse) during touch interactions, inform the device
of interaction mode changes, or assign power state.

The touch controller interface for each connected device is
accessed by a touch controller system (TCS) runtime module
810. Each device connection has a device input/output (i/o)
thread 830 that binds touch controller devices to the system,
queries and manages touch controller device capabilities, and

10

15

20

25

30

35

40

45

50

55

60

65

12

assigns device modes and attributes of the device in accor-
dance with host conditions and user configuration settings.
An input/output (i/0) buffer thread 832 extracts touch data
from the device. Each device connection also has an injection
thread 834 that injects information from the touch devices to
acore input stack 812 accessed by applications 814, to enable
a consistent and quality end-user experience for touch con-
troller devices. The TCS runtime module can be implemented
as a dynamically linked library installed as a user-level ser-
vice by the operating system, or can be a kernel-level imple-
mentation.

The runtime module performs the various functions for
which an example implementation is described above, such
as indirect-touch specific interactions, a user interaction
model, state transitions based on z-information, mapping
modes, acceleration/deceleration, span adjustment, normal-
ization of data across devices, and power management. A
touch controller control panel 820 is a user interface that
allows various settings of the runtime module 810 to be
manipulated by the users.

Any or all of the aforementioned alternate embodiments
described herein may be used in any combination desired to
form additional hybrid embodiments. It should be understood
that the subject matter defined in the appended claims is not
necessarily limited to the specific implementations described
above. The specific implementations described above are dis-
closed as examples only. The terms “article of manufacture”,
“process”, “machine” and “composition of matter” in the
preambles of the appended claims are intended to limit the
claims to subject matter deemed to fall within the scope of
patentable subject matter defined by the use of these terms in
35U.8.C. §101.

What is claimed is:

1. A computer system comprising:

one or more processors and memory; and

at least one input for connection to a multi-pointer touch
input devices to receive information from the multi-
pointer touch input device into the memory;

a runtime module executed by the one or more processors
to provide information from the multi-pointer touch
input devices to an input stack accessible by applications
executed by the one or more processors, wherein the
information includes contacts from an input session with
the multi-pointer touch input device in display coordi-
nates of a display of the computer system,

the runtime module being configured to access the infor-
mation from the memory and to map contacts on the
multi-pointer touch input device in device coordinates to
the contacts in the display coordinates, by: detecting a
beginning of the input session with the multi-pointer
touch input device; at the beginning of the input session,
determining a viewport that maps the device coordinate
system to the display coordinate system; and mapping
contacts received from the device during the input ses-
sion from device coordinates to display coordinates
using the viewport;

the runtime module further comprising a touch controller
control panel configuring the computer system to pro-
vide a user interface enabling users to manipulate set-
tings of the runtime module, the settings comprising at
least a mapping mode selected from a group comprising
an absolute mapping mode and a relative mapping
mode; and

wherein mapping the contacts comprises:

determining displacement of each of the contacts with
respect to other contacts;

US 9,389,679 B2

13

modifying the locations of the mapped contacts according
to the determined displacement for a selected contact
with a lowest magnitude displacement, by determining
an offset according to the lowest magnitude displace-
ment, and, for each contact, adding the offset to coordi-
nates of the contact.

2. The computer system of claim 1, further comprising:

for each multi-pointer touch input device, a touch control-

ler module having an interface; and

wherein the runtime module accesses each touch controller

module through the interface of the touch controller to
access information about contacts on the multi-pointer
touch input device.

3. The computer system of claim 2, wherein the touch
controller interface provides characteristics of the multi-
pointer-touch input device.

4. The computer system of claim 3, wherein the character-
istics include resolution of a sensor.

5. The computer system of claim 3, wherein the character-
istics include dimensions of a sensor.

6. The computer system of claim 1, wherein the runtime
module is further configured to apply acceleration, according
to an acceleration function, to the contacts as part of mapping
the contacts to the display coordinates.

7. The computer system of claim 6, wherein the user inter-
face of the touch controller control panel further comprises
settings for the acceleration function.

8. The computer system of claim 1, wherein the runtime
module is further configured to apply span adjustment,
according to a span adjustment function, to the contacts as
part of mapping the contacts to the display coordinates.

9. The computer system of claim 8, wherein the user inter-
face of the touch controller control panel further comprises
settings for the span adjustment function.

10. The computer system of claim 1, wherein the display is
a virtual display representing multiple monitors.

11. The computer system of claim 1, wherein the multi-
pointer touch input device is an indirect touch input device.

12. The computer system of claim 1, wherein the runtime
module is further configured to apply boundary conditions to
the contacts as part of mapping the contacts to the display
coordinates, and the user interface of the touch controller
control panel further comprises settings for the boundary
conditions.

13. An article of manufacture comprising:

computer storage, including at least one of memory and a

storage device,

computer program instructions stored on the computer

storage which, when processed by a computer, configure
the computer to:

receiving user input through a user interface provided by a

touch controller control panel, the user input specifying
manipulate settings of a runtime module, the settings
comprising at least a mapping mode selected from a
group comprising an absolute mapping mode and a rela-
tive mapping mode;

receive information from a multi-pointer touch input

device into a memory, the information describing con-
tacts on the multi-pointer touch input device;
using the received information, detect a beginning of an
input session with the multi-pointer touch input device;

at the beginning of the input session, determine a viewport
that maps a device coordinate system of the multi-
pointer touch input device to a display coordinate system
of'a display of the computer;

10

15

20

25

30

35

40

45

50

55

60

14

map the contacts received from the device during the input
session from device coordinates to display coordinates
using the viewport based on at least the settings;

provide the mapped contacts in display coordinates from
the input session to an input stack accessible by appli-
cations executed by the computer

wherein to map the contacts, the computer is configured to:

determine displacement of each of the contacts with
respect to other contacts; and

modify the locations of the mapped contacts according
to the determined displacement for a selected contact
with a lowest magnitude displacement, by determin-
ing an offset according to the lowest magnitude dis-
placement, and, for each contact, adding the offset to
coordinates of the contact.

14. The article of manufacture of claim 13, wherein the
received information from the multi-pointer touch input
device includes a list of contacts for a frame and attributes for
the contacts.

15. The article of manufacture of claim 13, wherein the
multi-pointer touch input device is an indirect touch input
device.

16. A computer-implemented process, comprising:

receiving user input through a user interface provided by a

touch controller control panel, the user input specifying
manipulate settings of a runtime module, the settings
comprising at least a mapping mode selected from a
group comprising an absolute mapping mode and a rela-
tive mapping mode;

receiving information from a multi-pointer touch input

device into a memory, the information describing con-
tacts on the multi-pointer touch input device;
using the received information, detecting a beginning of an
input session with the multi-pointer touch input device;

at the beginning of the input session, determining a view-
port that maps a device coordinate system of the multi-
pointer touch input device to a display coordinate system
of a display of the computer;
mapping the contacts received from the device during the
input session from device coordinates to display coordi-
nates using the viewport based on at least the settings;

providing the mapped contacts in display coordinates from
the input session to an input stack accessible by appli-
cations executed by the computer

wherein mapping comprises:

determining displacement of each of the contacts with
respect to other contacts; and

modifying the locations of the mapped contacts accord-
ing to the determined displacement for a selected
contact with a lowest magnitude displacement, by
determining an offset according to the lowest magni-
tude displacement, and, for each contact, adding the
offset to coordinates of the contact.

17. The computer-implemented process of claim 16,
wherein the multi-pointer touch input device is an indirect
touch input device.

18. The computer-implemented process of claim 16,
wherein the received information from the multi-pointer
touch input device includes a list of contacts for a frame and
attributes for the contacts.

19. The computer-implemented process of claim 16, fur-
ther comprising receiving a selection of a mapping mode.

#* #* #* #* #*

